首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2353篇
  免费   280篇
  国内免费   34篇
  2024年   2篇
  2023年   27篇
  2022年   31篇
  2021年   67篇
  2020年   87篇
  2019年   122篇
  2018年   83篇
  2017年   62篇
  2016年   68篇
  2015年   78篇
  2014年   156篇
  2013年   179篇
  2012年   113篇
  2011年   141篇
  2010年   104篇
  2009年   108篇
  2008年   102篇
  2007年   144篇
  2006年   115篇
  2005年   83篇
  2004年   100篇
  2003年   93篇
  2002年   61篇
  2001年   60篇
  2000年   56篇
  1999年   50篇
  1998年   45篇
  1997年   33篇
  1996年   36篇
  1995年   40篇
  1994年   25篇
  1993年   31篇
  1992年   26篇
  1991年   22篇
  1990年   18篇
  1989年   21篇
  1988年   20篇
  1987年   12篇
  1986年   9篇
  1985年   10篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1972年   1篇
排序方式: 共有2667条查询结果,搜索用时 15 毫秒
1.
目的:研究优质护理模式对心肌梗死康复期患者心理障碍及不良情绪的影响程度,旨在为康复期患者护理方式的选取提供理论依据。方法:将本院2014年1月~2014年12月的70例心肌梗死康复期患者遵照随机数字表法分为对照组和观察组各35例,对照组采用常规的康复护理进行干预,观察组则以优质护理理念为指导进行护理干预,然后将两组护理前和护理后2周、4周及8周的心理障碍及不良情绪状态采用SECD6量表及HAD量表进行评估,并将评估结果进行比较。结果:观察组护理后2周、4周及8周的SECD6量表及HAD量表评估结果均明显优于对照组,P均0.05,均有显著性差异。结论:优质护理模式对心肌梗死康复期患者治疗信心及不良情绪的影响相对更为积极,为患者康复治疗的顺利进行奠定了基础。  相似文献   
2.
Abstract: Proteolytic degradation of numerous calpain substrates, including cytoskeletal and regulatory proteins, has been observed during brain ischemia and reperfusion. In addition, calpain inhibitors have been shown to decrease degradation of these proteins and decrease postischemic neuronal death. Although these observations support the inference of a role for μ-calpain in the pathophysiology of ischemic neuronal injury, the evidence is indirect. A direct indicator of μ-calpain proteolytic activity is autolysis of its 80-kDa catalytic subunit, and therefore we examined the μ-calpain catalytic subunit for evidence of autolysis during cerebral ischemia. Rabbit brain homogenates obtained after 0, 5, 10, and 20 min of cardiac arrest were electrophoresed and immunoblotted with a monoclonal antibody specific to the μ-calpain catalytic subunit. In nonischemic brain homogenates the antibody identified an 80-kDa band, which migrated identically with purified μ-calpain, and faint 78- and 76-kDa bands, which represent autolyzed forms of the 80-kDa subunit. The average density of the 80-kDa band decreased by 25 ± 4 ( p = 0.008) and 28 ± 9% ( p = 0.004) after 10 and 20 min of cardiac arrest, respectively, whereas the average density of the 78-kDa band increased by 111 ± 50% ( p = 0.02) after 20 min of cardiac arrest. No significant change in the density of the 76-kDa band was detected. These results provide direct evidence for autolysis of brain μ-calpain during cerebral ischemia. Further work is needed to characterize the extent, duration, and localization of μ-calpain activity during brain ischemia and reperfusion as well as its role in the causal pathway of postischemic neuronal injury.  相似文献   
3.
采用TUNEL染色及免疫组织化学技术对光化学法脑缺血后细胞凋亡及其相关基因bcl-2表达的变化进行了研究。结果发现,缺血后12h,损伤侧皮层缺血区内凋亡细胞数及bcl-2免疫反应阳性细胞数明显增加,一直持续至缺血后72h;并呈现下列时程变化:在缺血后3h每张切片上几乎无凋亡细胞出现,以后逐渐增加,缺血后12h达到峰值,缺血后24h和缺血后72h逐渐减少,但仍高于假手术组水平。凋亡相关基因bcl-2的表达在缺血后3h以前不明显,缺血后12h逐渐增加,缺血后24h最多,以后逐渐下降。上述结果提示,缺血后凋亡细胞的时程变化可能与缺血后梗塞灶的发生和发展有关,而bcl-2表达的变化可能与抑制细胞凋亡、发挥内源性细胞保护作用有关。  相似文献   
4.
Abstract

The antioxidant effects of ellagic acid (EA) and hesperidin (HES) against skeletal muscle ischemia/reperfusion injury (I/R) were performed. Hindlimb ischemia has been induced by tourniquet occlusion for 2?h on left hindlimb. At the end of ischemia, the tourniquate has been removed and initiated reperfusion for 2?h. EA (100?mg/kg) has been applied orally before ischemia/reperfusion in the EA?+?I/R group. HES (100?mg/kg) has been given orally in the HES?+?I/R group. The left gastrocnemius muscle has been harvested and stored immediately at??80?°C until assessed for the levels of MDA and antioxidant enzymes activities. MDA level has statistically increased in I/R group (p?<?0.05) compared to other groups. The muscle tissue antioxidant enzymes activities were lower than the other groups in the I/R group (p?<?0.05). EA and HES treatments significantly reversed the damage level in I/R, also activity of tissue SOD increased in the EA?+?I/R and HES?+?I/R groups.  相似文献   
5.
Bilateral common carotid artery occlusion (15 min.) followed by two hours of recirculation reduced mitochondrial superoxide dismutase (SOD) and glutathione reductase (GR) activities, and increased susceptibility of mitochondrial membranes to in vitro lipid peroxidation in brain regions (i.e., cortex, striatum and hippocampus) of Mongolian gerbil. Intraperitoneal bolus injection (2 mg/kg b.w.) of liposome-entrapped CuZn superoxide dismutase (l-SOD) increased the endogenous SOD activity in normal brain tissue and, when given at the end of ischemia, counteracted both the ischemic reduction of endogenous SOD and the increased peroxidation of mitochondrial membranes. 1-SOD treatment was ineffective in reducing brain swelling, suggesting that superoxide radicals are not a main participant in the process of (post)ischemic brain edema formation.  相似文献   
6.
7.
The membrane type-1 matrix metalloproteinase (MT1-MMP) is a unique member of the MMP family, but induction patterns and consequences of MT1-MMP overexpression (MT1-MMPexp), in a left ventricular (LV) remodeling process such as myocardial infarction (MI), have not been explored. MT1-MMP promoter activity (murine luciferase reporter) increased 20-fold at 3 days and 50-fold at 14 days post-MI. MI was then induced in mice with cardiac restricted MT1-MMPexp (n = 58) and wild type (WT, n = 60). Post-MI survival was reduced (67% versus 46%, p < 0.05), and LV ejection fraction was lower in the post-MI MT1-MMPexp mice compared with WT (41 ± 2 versus 32 ± 2%,p < 0.05). In the post-MI MT1-MMPexp mice, LV myocardial MMP activity, as assessed by radiotracer uptake, and MT1-MMP-specific proteolytic activity using a specific fluorogenic assay were both increased by 2-fold. LV collagen content was increased by nearly 2-fold in the post-MI MT1-MMPexp compared with WT. Using a validated fluorogenic construct, it was discovered that MT1-MMP proteolytically processed the pro-fibrotic molecule, latency-associated transforming growth factor-1 binding protein (LTBP-1), and MT1-MMP-specific LTBP-1 proteolytic activity was increased by 4-fold in the post-MI MT1-MMPexp group. Early and persistent MT1-MMP promoter activity occurred post-MI, and increased myocardial MT1-MMP levels resulted in poor survival, worsening of LV function, and significant fibrosis. A molecular mechanism for the adverse LV matrix remodeling with MT1-MMP induction is increased processing of pro-fibrotic signaling molecules. Thus, a proteolytically diverse portfolio exists for MT1-MMP within the myocardium and likely plays a mechanistic role in adverse LV remodeling.  相似文献   
8.
Endothelin Evokes Efflux of Glutamate in Cultures of Rat Astrocytes   总被引:7,自引:0,他引:7  
Abstract: Excessive release of glutamate, from glial cells as well as neurons, is thought to be a major cause of neuronal death in ischemia. To investigate glutamate release from glial cells, we measured glutamate efflux from cultures of rat astrocytes preloaded with l -[3H]-glutamate. Glutamate efflux was induced by either 60 m M KCl or Na+-free medium, suggesting that the efflux is due to the reversed operation of a Na+- and K+-coupled glutamate uptake machinery. While investigating various neuropeptides and neurotransmitters, we found that endothelin (ET) specifically induced efflux of glutamate. Northern blot analysis and binding study showed that the ET type B receptor (ETB-R) subtype was expressed two to three times more densely than the ET type A receptor (ETA-R) in astrocytes. The ETB-R antagonist IRL 2500 partially inhibited efflux of glutamate induced by 1 n M ET-1 in a concentration-dependent manner, causing a maximal inhibition of 60% at 1 µ M . However, the ETA-R antagonist BQ-123 did not cause significant inhibition even at 10 µ M . Combination of both antagonists completely inhibited the ET-1-induced efflux. These results indicate that both receptor subtypes are involved in efflux of glutamate with a major contribution from the ETB-R. Our findings suggest that ET, which is known to be released in ischemia, may exacerbate neurodegeneration by stimulating efflux of glutamate.  相似文献   
9.
The aim of the study was to investigate the effects of endovascular hypothermia on mitochondrial biogenesis in a pig model of prolonged cardiac arrest (CA). Ventricular fibrillation was electrically induced, and animals were left untreated for 10 min; then after 6min of cardiopulmonary resuscitation (CPR), defibrillation was attempted. 25 animals that were successfully resuscitated were randomized into three groups: Sham group (SG, 5, no CA), normal temperature group (NTG, 5 for 12 h observation and 5 for 24 h observation), and endovascular hypothermia group (EHG, 5 for 12 h observation and 5 for 24 h observation). The core temperatures (Tc) in the EHG were maintained at 34 ± 0.5 °C for 6 h by an endovascular hypothermia device (Coolgard 3000), then actively increased at the speed of 0.5 °C per hour during the next 6 h to achieve a normal body temperature, while Tc were maintained at 37.5 ± 0.5 °C in the NTG. Cardiac and mitochondrial functions, the quantification of myocardial mitochondrial DNA (mtDNA), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α), nuclear respiratory factor (NRF)-1, and NRF-2 were examined. Results showed that myocardial and mitochondrial injury and dysfunction increased significantly at 12 h and 24 h after CA. Endovascular hypothermia offered a method to rapidly achieve the target temperature and provide stable target temperature management (TTM). Cardiac outcomes were improved and myocardial injuries were alleviated with endovascular hypothermia. Compared with NTG, endovascular hypothermia significantly increased mitochondrial activity and biogenesis by amplifying mitochondrial biogenesis factors’ expressions, including PGC-1α, NRF-1, and NRF-2. In conclusions, endovascular hypothermia after CA alleviated myocardial and mitochondrial dysfunction, and was associated with increasing mitochondrial biogenesis.  相似文献   
10.
We have previously demonstrated that ischemic injury changed the density of peroxisomes into two distinct peaks, one with a normal density (1.21 g/cm3; Peak I) and a second peak with a lighter density (1. 14 g/cm3; Peak II).We studied the peroxisomes from both peaks under the Electron microscope. Examination of peak I following ischemia showed loss of matrix proteins and damaged limiting membranes with leakage of DAB positive material in direct proportion to the duration of ischemia. Upon reperfusion of the ischemic liver Peak I showed more severe damage to the organelle. These observations clearly demonstrated that ischemia reperfusion injury causes structural damage to peroxisomes. Interestingly ultrastructural examination of Peak II following ischemia showed evidence of perisomal proliferation with budding of existing peroxisomes and the presence of micro peroxisomes (changes similar to those noted under conditions leading to perisomal proliferation). However, peak II following reperfusion showed only damaged organelle. These observations underline the importance of peroxisomes in the response of the cell to ischemia-reperfusion injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号